Rapid formation of spatiotopic representations as revealed by inhibition of return.
نویسندگان
چکیده
Inhibition of return (IOR), a performance decrement for stimuli appearing at recently cued locations, occurs when the target and cue share the same screen position. This is in contrast to cue-based attention facilitation effects that were recently suggested to be mapped in a retinotopic reference frame, the prevailing representation throughout early visual processing stages. Here, we investigate the dynamics of IOR in both reference frames, using a modified cued-location saccadic reaction time task with an intervening saccade between cue and target presentation. Thus, on different trials, the target was present either at the same retinotopic location as the cue, or at the same screen position (e.g., spatiotopic location). IOR was primarily found for targets appearing at the same spatiotopic position as the initial cue, when the cue and target were presented at the same hemifield. This suggests that there is restricted information transfer of cue position across the two hemispheres. Moreover, the effect was maximal when the target was presented 10 ms after the intervening saccade ended and was attenuated in longer delays. In our case, therefore, the representation of previously attended locations (as revealed by IOR) is not remapped slowly after the execution of a saccade. Rather, either a retinotopic representation is remapped rapidly, adjacent to the end of the saccade (using a prospective motor command), or the positions of the cue and target are encoded in a spatiotopic reference frame, regardless of eye position. Spatial attention can therefore be allocated to target positions defined in extraretinal coordinates.
منابع مشابه
Gradual remapping results in early retinotopic and late spatiotopic inhibition of return.
Here we report that immediately following the execution of an eye movement, oculomotor inhibition of return resides in retinotopic (eye-centered) coordinates. At longer postsaccadic intervals, inhibition resides in spatiotopic (world-centered) coordinates. These results are explained in terms of perisaccadic remapping. In the interval surrounding an eye movement, information is remapped within ...
متن کاملEnvironment- and eye-centered inhibitory cueing effects are both observed after a methodological confound is eliminated
Inhibition of return (IOR), typically explored in cueing paradigms, is a performance cost associated with previously attended locations and has been suggested as a crucial attentional mechanism that biases orientation towards novelty. In their seminal IOR paper, Posner and Cohen (1984) showed that IOR is coded in spatiotopic or environment-centered coordinates. Recent studies, however, have con...
متن کاملSpatiotopic neural representations develop slowly across saccades
One of the long-standing unsolved mysteries of visual neuroscience is how the world remains apparently stable in the face of continuous movements of eyes, head and body. Many factors seem to contribute to this stability, including rapid updating mechanisms that temporarily remap the visual input to compensate for the impending saccade. However, there is also a growing body of evidence pointing ...
متن کاملMemory for retinotopic locations is more accurate than memory for spatiotopic locations, even for visually guided reaching.
To interact successfully with objects, we must maintain stable representations of their locations in the world. However, their images on the retina may be displaced several times per second by large, rapid eye movements. A number of studies have demonstrated that visual processing is heavily influenced by gaze-centered (retinotopic) information, including a recent finding that memory for an obj...
متن کاملRetinotopic and non-retinotopic stimulus encoding in binocular rivalry and the involvement of feedback.
Adaptation is one of the key constituents of the perceptual alternation process during binocular rivalry, as it has been shown that preadapting one of the rivaling pairs before rivalry onset biases perception away from the adapted stimulus during rivalry. We investigated the influence of retinotopic and spatiotopic preadaptation on binocular rivalry. We show that for grating stimuli, preadaptat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 26 شماره
صفحات -
تاریخ انتشار 2010